Long-term tectonic control on Holocene shelf sedimentation offshore La Jolla, California

Leah J. Hogarth*
Jeffrey Babcock
Neal W. Driscoll
Nicolas Le Dantec
Jennifer K. Haas
Douglas L. Inman
Patricia M. Masters

Scripps Institution of Oceanography, University of California–San Diego, La Jolla, California 92093, USA

ABSTRACT

A high-resolution Compressed High-Intensity Radar Pulse (CHIRP) survey reveals shore-parallel variations in the Holocene sediment thickness offshore La Jolla, California. Sediment thicknesses decrease from >20 m in the south near Scripps Canyon to zero in the north approaching Torrey Pines. In addition to the south-to-north variation in sediment thickness, the transgressive surface observed in seismic lines shoals from Scripps Canyon to the north. Despite these dramatic shore-parallel subsurface changes, the nearshore bathymetry exhibits little to no change along strike. A left jog (i.e., a constraining bend) along the Rose Canyon fault causes local uplift in the region and appears to explain the northward shoaling of the transgressive surface, the decrease in relief on the transgressive surface away from the jog, and the Holocene sediment thickness variation. This tectonic deformation is shore parallel, and thus the accommodation can be separated into its tectonic and eustatic components.

Keywords: tectonic deformation, accommodation, transgressive surface, transpression.

INTRODUCTION

Many investigators have recognized the important role of tectonics in the preservation of sediments on active margin shelves (e.g., Orange, 1999; Driscoll and Hogg, 1995). In most locations, tectonic uplift or subsidence offsets the coastline vertically and causes base-level changes that are difficult to distinguish from sea-level changes; a common manifestation of tectonic uplift is subaerial terraces parallel to the coastline. Eustatic sea level has risen ~125 m in the past 20 k.y. (e.g., Fairbanks, 1989). Consequently, in seismic images and in outcrop, it is often difficult to separate sea-level changes from tectonic changes acting in the same plane during this time period. In the San Diego, California, area, regional uplift and sea-level change have created terraces (e.g., Bay Point Formation), but due to the geometry of the Rose Canyon fault zone, much tectonic deformation occurs shore parallel or orthogonal to eustatic sea-level changes and regional tectonic uplift (Kennedy, 1975). Thus, we can use the stratigraphic variability parallel to shore to discern the tectonic signal associated with the Rose Canyon fault from glacial-eustatic fluctuations or regional tectonic uplift. Furthermore, this will aid us in understanding how tectonic processes govern the preservation of sediments on the shelf. Such an understanding will allow us to define sand resources offshore as well as the distribution of hardgrounds on the seafloor, which may play an important role in biohabitats.

The San Diego area is west of the San Andreas fault zone and is characterized by a series of subparallel, en echelon faults including, from east to west, the San Jacinto, Elsinore, and Newport–Inglewood–Rose Canyon fault zones. In the La Jolla region, the Rose Canyon fault zone is a dextral strike-slip fault zone with complex surface expression (Treiman, 1993). The fault zone passes through La Jolla, forming Mount Soledad, a pop-up structure with a maximum uplift of ~150 m (Fig. 1); pop-up structures are areas of local uplift due to transpression or compression created when lateral motion on a strike-slip fault is interrupted by a bend or a jog in that fault. In the case of Mount Soledad, a left-stepping jog on the right-lateral Rose Canyon fault creates compression and uplift (Kennedy, 1975; Kennedy et al., 1979). Seismic surveys reveal that the Rose Canyon fault zone extends north and southeast offshore (Moore, 1972). Evidence of Holocene activity on the Rose Canyon fault zone comes from both offshore seismic data (Moore, 1972) and onshore trenches (Lindvall and Rockwell, 1995). Lindvall and Rockwell (1995) estimated that the total horizontal component of slip ranges from 1 to 2 mm/yr during the Holocene. In addition to the Rose Canyon fault system, Kennedy (1975) identified several other inactive northeast-southwest–trending oblique faults with vertical offset of ~10 m in the cliffs of Torrey Pines Beach (Fig. 1).

Our objective is to image the transgressive surface, overlying sands, and fault structures to better understand the processes influencing sediment accumulation and preservation on the shelf near La Jolla. Here we describe the observed morphology of the transgressive surface. We propose that our observation of a pop-up structure offshore, created by a constraining bend along the right-lateral Rose Canyon fault zone, controls the long-term accumulation of sediment in this region of the nearshore.

METHODS

In 2002, ~300 km of Compressed High-Intensity Radar Pulse (CHIRP) seismic data were acquired offshore from La Jolla Cove north to Del Mar (Fig. 1). We used a CHIRP sonar (Edgetech) with a sweep frequency of 1–5.5 kHz yielding submeter vertical resolution. During the nearshore survey, the CHIRP seismic system was mounted on a surface tow frame with an attached global positioning system receiver, thus minimizing navigation error. We generated an isopach map by tracing the transgressive surface and differencing it from the seafloor throughout the seismic grid. A nominal velocity of 1500 m/s was used to convert travel-
time to sediment thickness. Bathymetric data were acquired, processed, archived, and distributed by the Seafl oor Mapping Lab of California State University Monterey Bay (http://seafl oor.csumb.edu/SFMLwebDATA.htm).

RESULTS

Layers in the units below the transgressive surface generally exhibit distinct dips to the south (Fig. 2) that are consistent with the local dips of the Ardath Shale, Torrey Sandstone, and Del Mar Formation on land (Kennedy, 1975). The transgressive surface is identified in the profiles by marked truncation (Figs. 2 and 3), which was formed by wave-base erosion during the sea-level rise, and is mantled by a basal unit and an overlying acoustically transparent layer. This part of the shelf has been subaerially exposed during many sea-level lowstands during the Pleistocene; the erosion and truncation on this surface probably reflect multiple sea-level cycles, not just the last sea-level rise. The poorly laminated basal unit is only observed in the mid-to outer-shelf region and appears to record the early transgression in the region. The overlying transparent unit might reflect the early stage of the highstand systems tract, which exhibits cross-shelf thinning with a maximum depocenter in the mid-shelf. The acoustically transparent character, however, precludes identification of a downlap surface, and thus our ability to confidently discern whether this package is part of the late transgressive systems tract or the early highstand systems tract.

Seismic images from our survey show that the transgressive surface exhibits an overall southward dip, and the overlying sediment thickness decreases along strike to the north of Scripps Canyon (Figs. 2 and 4). A local reversal of dip also exhibits a change in acoustic reflectivity that might imply a more resistive hardground and may be fault controlled (Fig. 2A). It is difficult, however, to trace the fault laterally shoreward from line S10 to adjacent lines because of the limited acoustic penetration beneath the transgressive surface (Fig. 2A). The dip lines show that the maximum sediment thickness above the transgressive surface is located on the mid-shelf and systematically diminishes both landward and seaward (Fig. 3). The extent of the isopach map is limited by data density; it captures the edge of the mid-shelf depocenter and delineates the south-to-north thinning.

The isopach map of sediment thickness shows a depocenter between the La Jolla and Scripps canyons, as well as to the north of Scripps Canyon (Fig. 4). Sediment thickness systematically decreases along strike to the north from ~20 m just north of Scripps Canyon to zero offshore Torrey Pines (Figs. 2 and 4). Perpendicular to shore, sediment thickness ranges from ~0–5 m nearshore to maximum thicknesses of 10–20 m.

Figure 1. Survey ship track (black lines) superimposed on 2 m gridded bathymetry (data used in this study were acquired, processed, archived, and distributed by Seafl oor Mapping Lab of California State University Monterey Bay: http://seafl oor.csumb.edu/SFMLwebDATA.htm). White lines on bathymetry are contours (10 m intervals) to 100 m. Faults are shown in bold black: dashed for inferred location, D and U for downthrown and upthrown side, and right-lateral sense of strike-slip motion is shown with arrows. Left-stepping bend in Rose Canyon fault zone creates uplift of Mount Soledad. S4, S10, D1, and D2 (bold blue lines) indicate locations of strike lines shown in Figure 2 and dip lines shown in Figure 3. Local faults shown are based on Kennedy (1975).

Figure 2. CHIRP along-shelf strike lines. A: Profile S10 from offshore shows shoaling of transgressive surface (TS) to north of Scripps Canyon. At this depth, Holocene sediments mantle transgressive surface. B: Nearshore profile S4 shows truncation of underlying layers as consequence of wavebase erosion, which is interpreted to occur during sea-level transgression. TS is exposed at seafloor to north. Vibracore VC7 is projected onto line S4 south of Scripps Canyon. D1 and D2 are locations of crossing dip lines. See Figure 1 for locations (M—multiple, DG—data gap, DR—dipping reflector). C: Inset shows Vibracore VC7, which recovered fine-grained to very fine grained, olive-green, homogeneous sands. In upper 135 cm of Holocene sediment there is no evidence for event beds associated with storms or floods. See Figure 4 for core location. D: Inset shows detail of TS and associated truncation.
in the mid-shelf region before thinning again as water depth increases (Figs. 3 and 4).

The area where hardgrounds crop out to the north correlates with the deflection of bathymetric contours offshore at water depths >60 m (Fig. 4). Note that the nearshore contours do not exhibit this deflection, even though the slope of the isopach surface changes in this area from west dipping to southwest dipping.

A 135-cm-long Vibracore acquired in 2005 (Figs. 2 and 4) recovered fine-grained to very fine grained, olive-green, homogeneous sands consistent with the sediment recovered in longer Vibracores from the region (Darigo and Osbourne, 1986; Fig. 4). Mud horizons or coarse layers indicative of flood or storm events are not observed in this homogeneous upper layer. Beneath the sand is a slightly coarser unit that is not as well sorted, and includes larger clasts and more abundant shell fragments (units II and III of Darigo and Osbourne, 1986), which may be a transgressive lag deposit. The major fluvial input to this littoral cell is by the Santa Margarita and San Luis Rey rivers to the north, with predomi-nant southern longshore transport (Inman and Jenkins, 1999). Wave reworking and longshore transport winnow out the fine-grained particles, resulting in a homogeneous nearshore deposit, consistent with the transparent acoustic character observed in the seismic data. Early Holocene floods may have contributed coarser material, but fine-grained to very fine grained sand likely resulted from the past 5 k.y. of enhanced El Niño–driven wave energy and consequent southern sand transport (Masters, 2006).

DISCUSSION

Several faulting trends in the La Jolla area could potentially explain the observed seawater structure and sediment distribution. For example, one possible scenario is that the relief on the transgressive surface is only controlled by steeply dipping northeast-southwest–trending normal faults, such as those observed onshore at the southern end of Torrey Pines State Reserve (e.g., Carmel Valley fault, Fig. 1). On the basis of terrace offsets, these faults are older than 120 ka (Treiman, 1993). If such a fault caused uplift of the more resistant Del Mar Formation to the north with respect to the less resistant Scripps Formation to the south, we would expect a jog of isobaths seaward as the more resistant Del Mar Formation formed a promontory. If this scenario were correct, it would not predict that the isobaths shift seaward at the south end and return shoreward at the north end of the pop-up structure, which is consistent with the isobaths deeper than ~60 m (Fig. 4; see also the regional National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center 3-arc-second coastal relief model [http://www.ngdc.noaa.gov/mgg/coastal/grddas06/grddas06.htm]). A gentle, long-wave-length uplift of the transgressive surface is observed in the seismic images, consistent with a left jog along the Rose Canyon fault zone. The relief on the transgressive surface is largest in the west near the jog in the Rose Canyon fault (e.g., 26.5 m; Fig. 2A) and diminishes eastward away from the jog (e.g., 21.5 m; Fig. 2B), as would be predicted by the pop-up hypothesis (Fig. 5).

Seismic data recently acquired (2005 R/V New
CONCLUSIONS

High-resolution geophysical data suggest that uplift offshore La Jolla, California, results from a left jog along the Rose Canyon right-lateral fault system, similar to the process responsible for forming Mount Soledad onshore. CHIRP seismic profiles show a shoaling of the transgressive surface from south to north. The seaward deflection of isoliths in the bathymetric data correlates with the change in slope of the transgressive surface and the change in overlying sediment thickness observed in the isopach map. Seismic profiles reveal that the sediments thin to zero above the uplifted bedrock, while the thickest sediments occur to the south of the pop-up structure. The observed sediment thicknesses suggest that tectonics control long-term sediment accumulation in the region, and hydrodynamics control sediment dispersion. Strain accommodation between right-lateral fault segments offshore Southern California results in marked thickness variability of the Holocene sediments. This new insight into controls on sediment accumulation and preservation may advance the understanding of our offshore sand resources and exposure of hardgrounds in the California Borderlands.

ACKNOWLEDGMENTS

This research was funded by the Office of Naval Research and the Kavli Institute. Reviews from Paul Liu, Dan Orange, and Glen Spinelli improved the manuscript.

REFERENCES CITED

National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) 3-arc-second coastal relief model: http://www.ngdc.noaa.gov/mgg/coastal/grddas06/grddas06.htm. Black lines indicate fault trace; sense of motion is illustrated by arrows or D and U for downthrown and upthrown blocks.